Outline of Solutions to Exam in Financial Econometrics A: January 2013 (for fall term 2012)

Anders Rahbek, University of Copenhagen

January 2013

Question A:

Question A.1: Solution: $\gamma = \omega / (1 - \alpha)$ and hence $\omega = \gamma (1 - \alpha)$.

Question A.2: Solution: Drift function with $\delta(x) = 1 + x^4$. $E(\delta(x_t) | x_{t-1} = x) = 3(\gamma(1-\alpha) + \alpha x^2)^2$ and standard arguments give the desired as the dominating term is $3\alpha^2$ for which we need α such that we can find a β that satisfies: $3\alpha^2 < \beta < 1$.

Question A.3:Solution: $l_t(\theta) = \log \sigma_t^2 + \frac{x_t^2}{\sigma_t^2}$ and direct differentiation gives the desired.

Question A.4: Solution: $E\left(\left.\frac{\partial l_t(\theta)}{\partial \alpha}\right|_{\theta=\theta_0} \left| x_{t-1} \right.\right) = E\left(1-z_t^2\right) \frac{\left(x_{t-1}^2-\gamma_0\right)}{\sigma_{0t}^2} = 0$ and $\frac{\partial l_t(\theta)}{\partial \alpha}$ is a MGD. Hence as

$$\frac{1}{T}\sum_{t=1}^{T} E\left(\left.\frac{\partial l_t\left(\theta\right)}{\partial \alpha}\right|_{\theta=\theta_0} \left| x_{t-1}\right) = 2\frac{1}{T}\sum_{t=1}^{T} \left(\frac{\left(x_{t-1}^2 - \gamma_0\right)}{\sigma_{0t}^2}\right)^2 \to^P \xi := 2E\left(\frac{\left(x_{t-1}^2 - \gamma_0\right)}{\sigma_{0t}^2}\right)^2 < \infty.$$

This is finite either since $Ex_t^4 < \infty$ (strong requirement) or inequality (zero requirement):

$$\left(\frac{(x_{t-1}^2 - \gamma_0)}{\sigma_t^2}\right)^2 = \left(\frac{(x_{t-1}^2 - \gamma_0)}{\gamma_0 + \alpha_0(x_{t-1}^2 - \gamma_0)}\right)^2 \le \frac{1}{\gamma_0^2}.$$

Question A.5: Solution: LLN: x_t is weakly mixing, and provided $\alpha_0 < 1$ gives: $\hat{\gamma}_T \rightarrow^P E x_t^2 = \gamma_0$.

One may add (not asked for) that using MGD CLT gives provided 4^{th} order moments finite,

$$\sqrt{T}\left(\hat{\gamma}_{VT} - \gamma_0\right) = \frac{1}{\sqrt{T}} \sum_{t=1}^T \left(x_t^2 - \gamma_0\right) \to^D N\left(0, \psi\right).$$

Question A.6:Solution:

Normality strongly rejected - while OK in terms of ARCH effects. $\hat{\gamma}_{VT}$ is a naive and model free variance estimator - and hence would be consistent provided series second order moment. However, as model is misspecified we do not know if $\hat{\alpha} = 0.6$ is "small or big". Would be ok if z_t Gaussian - Another model: Probably allow for fatter tails - t_v distribution instead of Gaussian. Can also then work out conditions for finite moments (variance).

Question B:

Question B.1: Solution: That while the residuals are well-specified (no ARCH, and normality accepted) - the states are very close to be absorbing and hence a degenerate MS model.

Question B.2: Solution: This is a mixture ARCH - most likely more fat tails than classic ARCH, and classic iid mixture. Likelihood, $L_T(\theta) = \sum_{t=1}^{T} l_t(\theta)$,

$$l_t(\theta) = \log \left(pf_1(y_t | y_{t-1}) + (1-p)f_2(y_t | y_{t-1}) \right),$$

where f_1 and f_2 are Gaussian densities for the normal distribution with mean zero, and variances σ_{1t}^2 and σ_{2t}^2 respectively. For example, up to a constant,

$$\log f_1 = -\frac{1}{2} [\log \sigma_{1t}^2 + y_t^2 / \sigma_{1t}^2]$$

Question B.3: Solution: Same as EM-algorithm: One should here explain main principles of EM-algorithm.

Alternative: Discuss how MLE using numerical optimization will work.

Some computations/arguments may be of the kind:

Fix p and α at some initial value, $p_{(1)}$ and $\alpha_{(1)}$ say. Next compute $p_t^*(p_{(1)}, \alpha_{(1)})$ find the $\alpha_{(2)}$ which solves ("weighted ARCH MLE")

$$\partial L_T / \partial \alpha = \sum_{t=1}^T p_t^* \left(p_{(1)} \right) \left(1 - \frac{y_t^2}{\sigma_{1t}^2} \right) \frac{y_{t-1}^2}{\sigma_{1t}^2} = 0,$$

and the $p_{(2)}$ which solves $\partial L_T / \partial p = 0$ (nonlinear). Next, update $p_t^* = p_t^* (p_{(2)}, \alpha_{(2)})$ and repeat finding zero scores.

$$\frac{\partial l_t}{\partial p} = \frac{f_1 - f_2}{pf_1 + (1 - p)f_2} \rightarrow \frac{\partial L_T}{\partial p} = 0 = \sum \left(\frac{f_{1t} - f_{2t}}{pf_{1t} + (1 - p)f_{2t}}\right)$$
(non-linear)
$$\frac{\partial l_t}{\partial \alpha} = \left(\frac{p_1 f_1}{pf_1 + (1 - p)f_2}\right) \left(1 - \frac{y_t^2}{\sigma_{1t}^2}\right) \frac{y_{t-1}^2}{\sigma_{1t}^2}$$
("weighted"-ARCH)

Question B.4: Solution: If p = 1 the model reduces to an ARCH(1) - so with $\hat{\omega}$ and $\hat{\alpha}$ the MLE's in this case would use:

$$y_t/\sqrt{\hat{\omega}+\hat{\alpha}y_{t-1}}\simeq z_t\stackrel{D}{=}N(0,1)$$

And the usual formula from lectures can be written here $(-\sqrt{\hat{\omega} + \hat{\alpha}y_{t-1}}\Phi_{5\%}^{-1})$.

Comparing the iid with $cVaR_t$: Discuss mixed Gaussian (fatter tails marginally).

Question B.5: Solution: In this case one can use the smoothed s_t values, $E(s_t = 1|y_1, ..., y_t) = p_t^*$, which is part of the "usual" output from MS estimation and would also be here by definition. Hence with \hat{p}_t^* one could use (other ideas may also be proposed such as conditioning on $y_1, ..., y_T$ instead):

$$y_t / \sqrt{\hat{p}_t^* (\hat{\omega} + \hat{\alpha} y_{t-1}) + (1 - \hat{p}_t^*) \hat{\gamma}} \simeq z_t \stackrel{D}{=} N(0, 1).$$