Outline of Solutions to Exam in Financial Econometrics A: January 2013 (for fall term 2012)

Anders Rahbek, University of Copenhagen

January 2013

Question A:

Question A.1: Solution: $\gamma=\omega /(1-\alpha)$ and hence $\omega=\gamma(1-\alpha)$.
Question A.2: Solution: Drift function with $\delta(x)=1+x^{4} . E\left(\delta\left(x_{t}\right) \mid x_{t-1}=x\right)=$ $3\left(\gamma(1-\alpha)+\alpha x^{2}\right)^{2}$ and standard arguments give the desired as the dominating term is $3 \alpha^{2}$ for which we need α such that we can find a β that satisfies: $3 \alpha^{2}<$ $\beta<1$.

Question A.3:Solution: $l_{t}(\theta)=\log \sigma_{t}^{2}+\frac{x_{t}^{2}}{\sigma_{t}^{2}}$ and direct differentiation gives the desired.
Question A.4: Solution: $E\left(\left.\left.\frac{\partial l_{t}(\theta)}{\partial \alpha}\right|_{\theta=\theta_{0}} \right\rvert\, x_{t-1}\right)=E\left(1-z_{t}^{2}\right) \frac{\left(x_{t-1}^{2}-\gamma_{0}\right)}{\sigma_{0 t}^{2}}=0$ and $\frac{\partial l_{t}(\theta)}{\partial \alpha}$ is a MGD. Hence as
$\frac{1}{T} \sum_{t=1}^{T} E\left(\left.\left.\frac{\partial l_{t}(\theta)}{\partial \alpha}\right|_{\theta=\theta_{0}}\right|_{t-1}\right)=2 \frac{1}{T} \sum_{t=1}^{T}\left(\frac{\left(x_{t-1}^{2}-\gamma_{0}\right)}{\sigma_{0 t}^{2}}\right)^{2} \rightarrow^{P} \xi:=2 E\left(\frac{\left(x_{t-1}^{2}-\gamma_{0}\right)}{\sigma_{0 t}^{2}}\right)^{2}<\infty$.
This is finite either since $E x_{t}^{4}<\infty$ (strong requirement) or inequality (zero requirement):

$$
\left(\frac{\left(x_{t-1}^{2}-\gamma_{0}\right)}{\sigma_{t}^{2}}\right)^{2}=\left(\frac{\left(x_{t-1}^{2}-\gamma_{0}\right)}{\gamma_{0}+\alpha_{0}\left(x_{t-1}^{2}-\gamma_{0}\right)}\right)^{2} \leq \frac{1}{\gamma_{0}^{2}}
$$

Question A.5: Solution: LLN: x_{t} is weakly mixing, and provided $\alpha_{0}<1$ gives: $\hat{\gamma}_{T} \rightarrow{ }^{P} E x_{t}^{2}=\gamma_{0}$.

One may add (not asked for) that using MGD CLT gives provided $4^{\text {th }}$ order moments finite,

$$
\sqrt{T}\left(\hat{\gamma}_{V T}-\gamma_{0}\right)=\frac{1}{\sqrt{T}} \sum_{t=1}^{T}\left(x_{t}^{2}-\gamma_{0}\right) \rightarrow^{D} N(0, \psi)
$$

Question A.6:Solution:

Normality strongly rejected - while OK in terms of ARCH effects. $\hat{\gamma}_{V T}$ is a naive and model free variance estimator - and hence would be consistent provided series second order moment. However, as model is misspecified we do not know if $\hat{\alpha}=0.6$ is "small or big". Would be ok if z_{t} Gaussian - Another model: Probably allow for fatter tails - t_{v} distribution instead of Gaussian. Can also then work out conditions for finite moments (variance).

Question B:

Question B.1: Solution: That while the residuals are well-specified (no ARCH , and normality accepted) - the states are very close to be absorbing and hence a degenerate MS model.

Question B.2: Solution: This is a mixture ARCH - most likely more fat tails than classic ARCH, and classic iid mixture. Likelihood, $L_{T}(\theta)=$ $\sum_{t=1}^{T} l_{t}(\theta)$,

$$
l_{t}(\theta)=\log \left(p f_{1}\left(y_{t} \mid y_{t-1}\right)+(1-p) f_{2}\left(y_{t} \mid y_{t-1}\right)\right)
$$

where f_{1} and f_{2} are Gaussian densities for the normal distribution with mean zero, and variances $\sigma_{1 t}^{2}$ and $\sigma_{2 t}^{2}$ respectively. For example, up to a constant,

$$
\log f_{1}=-\frac{1}{2}\left[\log \sigma_{1 t}^{2}+y_{t}^{2} / \sigma_{1 t}^{2}\right]
$$

Question B.3: Solution: Same as EM-algorithm: One should here explain main principles of EM-algorithm.

Alternative: Discuss how MLE using numerical optimization will work.
Some computations/arguments may be of the kind:
Fix p and α at some initial value, $p_{(1)}$ and $\alpha_{(1)}$ say. Next compute $p_{t}^{*}\left(p_{(1)}, \alpha_{(1)}\right)$ find the $\alpha_{(2)}$ which solves ("weighted ARCH MLE")

$$
\partial L_{T} / \partial \alpha=\sum_{t=1}^{T} p_{t}^{*}\left(p_{(1)}\right)\left(1-\frac{y_{t}^{2}}{\sigma_{1 t}^{2}}\right) \frac{y_{t-1}^{2}}{\sigma_{1 t}^{2}}=0
$$

and the $p_{(2)}$ which solves $\partial L_{T} / \partial p=0$ (nonlinear). Next, update $p_{t}^{*}=p_{t}^{*}\left(p_{(2)}, \alpha_{(2)}\right)$ and repeat finding zero scores.

$$
\begin{aligned}
& \partial l_{t} / \partial p=\frac{f_{1}-f_{2}}{p f_{1}+(1-p) f_{2}} \rightarrow \partial L_{T} / \partial p=0=\sum\left(\frac{f_{1 t}-f_{2 t}}{p f_{1 t}+(1-p) f_{2 t}}\right) \text { (non-linear) } \\
& \partial l_{t} / \partial \alpha=\left(\frac{p_{1} f_{1}}{p f_{1}+(1-p) f_{2}}\right)\left(1-\frac{y_{t}^{2}}{\sigma_{1 t}^{2}}\right) \frac{y_{t-1}^{2}}{\sigma_{1 t}^{2}}(\text { "weighted"-ARCH) }
\end{aligned}
$$

Question B.4: Solution: If $p=1$ the model reduces to an $\operatorname{ARCH}(1)$ - so with $\hat{\omega}$ and $\hat{\alpha}$ the MLE's in this case would use:

$$
y_{t} / \sqrt{\hat{\omega}+\hat{\alpha} y_{t-1}} \simeq z_{t} \stackrel{D}{=} N(0,1)
$$

And the usual formula from lectures can be written here $\left(-\sqrt{\hat{\omega}+\hat{\alpha} y_{t-1}} \Phi_{5 \%}^{-1}\right)$.
Comparing the iid with cVaR_{t} : Discuss mixed Gaussian (fatter tails marginally).

Question B.5: Solution: In this case one can use the smoothed s_{t} values, $E\left(s_{t}=1 \mid y_{1}, . ., y_{t}\right)=p_{t}^{*}$, which is part of the "usual" output from MS estimation and would also be here by definition. Hence with \hat{p}_{t}^{*} one could use (other ideas may also be proposed such as conditioning on y_{1}, \ldots, y_{T} instead):

$$
y_{t} / \sqrt{\hat{p}_{t}^{*}\left(\hat{\omega}+\hat{\alpha} y_{t-1}\right)+\left(1-\hat{p}_{t}^{*}\right) \hat{\gamma}} \simeq z_{t} \stackrel{D}{=} N(0,1)
$$

